On solving integral equations using Markov chain Monte Carlo methods

نویسندگان

  • Arnaud Doucet
  • Adam M. Johansen
  • Vladislav B. Tadic
چکیده

In this report, we propose an original approach to solve Fredholm equations of the second kind. We interpret the standard von Neumann expansion of the solution as an expectation with respect to a probability distribution de…ned on an union of subspaces of variable dimension. Based on this representation, it is possible to use trans-dimensional Markov Chain Monte Carlo (MCMC) methods such as Reversible Jump MCMC to approximate the solution numerically. This can be an attractive alternative to standard Sequential Importance Sampling (SIS) methods routinely used in this context. We sketch an application to value function estimation for a Markov decision process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monte Carlo Simulation to Solve the Linear Volterra Integral Equations of The Second Kind

This paper is intended to provide a numerical algorithm based on random sampling for solving the linear Volterra integral equations of the second kind. This method is a Monte Carlo (MC) method based on the simulation of a continuous Markov chain. To illustrate the usefulness of this technique we apply it to a test problem. Numerical results are performed in order to show the efficiency and accu...

متن کامل

A Stochastic algorithm to solve multiple dimensional Fredholm integral equations of the second kind

In the present work‎, ‎a new stochastic algorithm is proposed to solve multiple dimensional Fredholm integral equations of the second kind‎. ‎The solution of the‎ integral equation is described by the Neumann series expansion‎. ‎Each term of this expansion can be considered as an expectation which is approximated by a continuous Markov chain Monte Carlo method‎. ‎An algorithm is proposed to sim...

متن کامل

Monte Carlo Simulation to Solve the Linear Volterra Integral Equations of The Second Kind

This paper is intended to provide a numerical algorithm based on random sampling for solving the linear Volterra integral equations of the second kind. This method is a Monte Carlo (MC) method based on the simulation of a continuous Markov chain. To illustrate the usefulness of this technique we apply it to a test problem. Numerical results are performed in order to show the efficiency and accu...

متن کامل

Monte Carlo Methods for Systems of Linear Equations

We study Monte Carlo methods for solving systems of linear equations. We propose three methods to generate the trajectories of the Markov chain associated to the system. We calculate the average complexity of generating the trajectories using these methods. From the complexity point of view, the proposed methods are better than other methods reported in the literature.

متن کامل

Study of Preconditioners based on Markov Chain Monte Carlo Methods

Nowadays, analysis and design of novel scalable methods and algorithms for fundamental linear algebra problems such as solving Systems of Linear Algebraic Equations with focus on large scale systems is a subject of study. This research focuses on the study of novel mathematical methods and scalable algorithms for computationally intensive problems such as Monte Carlo and Hybrid Methods and Algo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 216  شماره 

صفحات  -

تاریخ انتشار 2010